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We studied the effects of fungal endophyte infec-
tion of meadow ryegrass (Lolium pratenseZ
Festuca pratensis) on the frequency of the barley
yellow dwarf virus (BYDV). The virus is trans-
ferred by aphids, which may be deterred by
endophyte-origin alkaloids within the plant. In
our experiment, we released viruliferous aphid
vectors on endophyte-infected and endophyte-
free plants in a common garden. The number of
aphids and the percentage of BYDV infections
were lower in endophyte-infected plants
compared to endophyte-free plants, indicating
that endophyte infection may protect meadow
ryegrass from BYDV infections.

Keywords: endophytes; grasses; barley yellow
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1. INTRODUCTION
Systemic fungal endophytes live inside many Pooidae
grasses. These fungi are asymptomatic and may form
a mutualistic relationship with their hosts (Clay 1988;
Saikkonen et al. 2004; Schardl et al. 2004), increasing
the host’s growth (Arachevaleta et al. 1989), herbivore
resistance (Cheplick & Clay 1988; Breen 1994) and
tolerance to various stresses (Arachevaleta et al. 1989;
Bacon 1993). In turn, the endophyte receives nutri-
ents, carbohydrates and shelter from its host.
Recently, it has been acknowledged that the nature of
the relationship varies from mutualistic to antagon-
istic (Saikkonen et al. 1998; Faeth 2002), depending
on, for example, environmental conditions (Cheplick
et al. 1989; Lehtonen et al. 2005a), the genetic
background of the grass and fungus (Faeth et al.
2002) and interacting species in the community
(Saikkonen et al. 2004; Lehtonen et al. 2005b).

Experimental research has mostly focused on direct,
pairwise interactions between host plant and fungal
endophytic symbiont, or tripartite interactions, includ-
ing herbivores (e.g. Clay 1988; Bacon 1993; Breen
1994; Saikkonen et al. 1998). Species interactions in
natural systems, however, are likely to be more
complex. For example, plant pathogens may be affected
by endophytic fungi, but only a limited number of
studies have investigated pathogen–endophyte
interactions (Schardl et al. 2004). Endophytes have
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been hypothesized to inhibit plant pathogens and thus
benefit their host (Clay 1988). Endophytes have been
observed to reduce pathogenic growth in cultures
(Siegel & Latch 1991; Yue et al. 2000) and in planta
(Stovall & Clay 1991; Gwinn & Gavin 1992), but
contradictory or neutral results have also been obtained
(Burpee & Bouton 1993; Hamilton & Faeth 2005).
The mechanism of increased disease resistance in
endophyte-infected plants is largely unknown, but it is
hypothesized that compounds produced by endophytes
may at least play a partial role in this phenomenon (Yue
et al. 2000).

A special case of plant pathogens is the plant
viruses, because the properties of the host plant can
affect them both directly by host metabolites and
indirectly via effects of plant quality on insect vectors
transmitting the viruses from host to host. Barley
yellow dwarf virus (BYDV) is one of the most
harmful cereal viruses, and it is transmitted to cereals
from perennial grasses near the crop field by aphid
vectors (Rochow & Duffus 1981). The aphids get the
virus by feeding on contaminated plants. The aphids
carry the virus, but do not transmit the infection to
their offspring. BYDV is transmitted by aphids which
could be deterred by endophyte-origin alkaloids
(Schardl & Phillips 1997). Thus, it is possible that
endophyte infection influences virus transmission.
However, the results obtained from the few endophyte–
BYDV studies have been contradictory, e.g. Guy
(1992) found no correlation between virus infection
and the incidence of endophyte in perennial ryegrass
(Lolium perenne), whereas other correlative studies
have revealed that some endophyte-infected tall fescue
(Festuca arundinaceum) origins seem to be more
resistant to BYDV than the others (Mahmood et al.
1993; Guy & Davis 2002). In this common garden
experiment, our aim was to examine how endophyte
infection affects BYDV transmission in meadow
ryegrass (Lolium pratense).
2. MATERIAL AND METHODS
Meadow ryegrass is commonly infected by systemic and strictly
vertically transmitted fungal endophyte Neotyphodium uncinatum
(Craven et al. 2001). Among Nordic cultivars of meadow ryegrass,
endophyte frequencies vary from 0 to 100% (Saikkonen et al.
2000), and there are notable differences also within cultivars among
seed lots (Lehtonen et al., unpublished data).

The bird cherry oat aphid (Rhopalosiphum padi ) was used as a
vector and as a herbivore in this study, because it is a natural
herbivore of meadow ryegrass (Heie 1981) and an important
transmitter of BYDV (Guy et al. 1987). More specifically, R. padi is
the transmitter of the PAV strain of BYDV, which is the most
commonly occurring and the most severe of the different BYDVs
worldwide ( Wang et al. 2000) and in the Nordic countries,
including Finland and Baltic countries (Bisnieks et al. 2004).

Mature meadow ryegrass (L. pratense) individuals (diameter
approx. 10 cm, consisting of ca 30 tillers) were randomly chosen
from an old pasture located in southwestern Finland (Lehtonen
et al. 2005a) and transplanted randomly into a common garden
near to the pasture into four blocks, seven endophyte-infected
(EC) and seven uninfected (EK) plants in each block in August
2001. The grass samples to control for the natural infections were
taken before the beginning of the experiment. Aphids were fed on
BYDV-PAV-infected oat leaves for one week before the experiment.
Twenty-five aphids carrying BYDV-PAV were released into each
block and were left to reproduce for two months. The blocks were
covered with organdy cages (1.5 m!1.5 m!1 m (height)) to
prevent viral infections from spreading to the neighbouring plants.
The soil was nutrient-rich and high in organic matter (manured the
previous spring). The plants were harvested in October 2001,
aphids were counted and samples for the BYDV-PAV analysis were
taken. Tillers were dried and weighed.
q 2006 The Royal Society
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Figure 1. (a) Effects of endophyte infection on BYDV-PAV infection frequency (%) before the experiment (plants naturally
BYDV-infected in the field before transplantation) and after the experiment in the common garden. (b) Number of aphids
on endophyte-infected (EC) and endophyte-free plants (EK) (meanGs.e.). �p%0.05, ��p%0.01.

Table 1. Results of logistic regressions and general linear models by GENMOD showing the effects of endophyte infection
and block on BYDV-PAV infections before and after the experiment, number of aphids and plant biomass. (Significant
p-values (p!0.05) are shown in bold.)

source of variation

BYDV (before the experiment)
BYDV (after the
experiment) number of aphids plant biomass

d.f. c2 p c2 p c2 p c2 p

endophyte 1 3.74 0.05 5.08 0.02 8.79 0.003 1.28 0.26
block 3 4.79 0.19 3.25 0.35 29.52 !0.0001 2.62 0.46
endophyte!block 3 4.07 0.25 3.60 0.31 2.25 0.52 1.98 0.68
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The statistical analyses were performed with the SAS statistical
package (v. 8.02), with the GENMOD procedure. Logistic
regression for the occurrence of BYDV-PAV infection was calcu-
lated with binomial distribution and logit link, with endophyte
infection and block as independent factors. General linear models
for the numbers of aphids and plant biomasses were calculated
separately with normal distribution and identity link, again with
endophyte infection and block as independent factors. The num-
bers of aphids and plant biomasses were logarithm transformed to
fit the requirements of the models. p-values are based on type 3
chi-square values in all the analyses (SAS Technical Report P-243
1993).

Leaf samples, two to four leaves (about 0.5 g), were taken for
BYDV-PAV analysis before and after the aphid experiment. Leaves
were frozen at K20 8C for one to three months until assayed by
ELISA. Approximately 0.1 g of each sample was ground in 1 ml of
the sample extraction buffer (specified by Bioreba Ag., Reinach,
Germany) and detected by the DAS-ELISA assay. BYDV-PAV-
specific antisera, conjugate and the alkaline phosphate substrate
(Bioreba) were used according to the manufacturer’s instructions.
After 1 hour of incubation from substrate addition, the absorbances
were measured at the optical density of 620 nm. Absorbance values
at least twice as high as in healthy oat leaves (comparable to healthy
meadow ryegrass leaves) were considered positive for BYDV-PAV
infection
3. RESULTS
We found BYDV-PAV to infect EC plants less
frequently than EK plants (figure 1a). Since some of
the plants were infected before the beginning of the
experiment, we analysed the BYDV-PAV infections
separately for plants that were infected before the
experiment and excluded these plants from the final
analysis (number of replicates for the final analysis:
EC, 22; EK, 19). The results of both analyses
showed significant effects of endophyte infection in
reducing infection frequency by BYDV-PAV (table 1).
The infection frequencies before and after the
Biol. Lett. (2006)
experiment are shown in figure 1a. The effects of
block and the block!endophyte interaction on
BYDV-PAV infections were non-significant in both
analyses (table 1). Endophyte infection reduced the
number of aphids (figure 1b; table 1). There were no
differences in biomasses between endophyte-infected
and uninfected plants (table 1).
4. DISCUSSION
We found endophyte infection to lower the frequen-
cies of BYDV in meadow ryegrass. Endophyte-
infected meadow ryegrass plants harboured less viral
infections both in natural and common garden
conditions than uninfected plants. The reproduction
of bird cherry oat aphids was decreased on endo-
phyte-infected plants compared to uninfected plants.
We assume that the poor performance of aphids on
EC plants is the main reason for the lower BYDV-
PAV infection frequency in endophyte-infected mea-
dow ryegrass. In a previous study, we found bird
cherry oat aphid to be deterred by endophyte-infected
meadow ryegrass in greenhouse conditions, especially
at high soil nutrient levels (Lehtonen et al. 2005a).
The alkaloids produced by the Neotyphodium-infected
meadow ryegrass were identified to be lolines
(Lehtonen et al. 2005b), which are known to deter a
wide range of insect herbivores (Schardl & Phillips
1997). The effects of endophytes on BYDV frequen-
cies are likely to depend on alkaloid types produced
by the fungus–plant symbiosis, because the suscep-
tibility of aphid species to different alkaloids greatly
varies (Siegel 1990; Eichenseer & Dahlman 1992).
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Yet, we cannot exclude the possible role of a

biochemical factor in endophyte–BYDV interactions.

For example, some alkaloids are shown to have antiviral

activities (e.g. Wang et al. 2004), though they have not

been reported in alkaloid-producing grass–endophyte

systems. Few studies examining effects of endophytes

on BYDV transmission in grasses exist—and they are of

correlative nature—have shown inconsistent results in

terms of BYDV frequencies in endophyte-infected

plants (Guy 1992; Mahmood et al. 1993; Guy & Davis

2002).

The effects of BYDV infection on the performance

of pasture grasses are variable (Catherall & Parry

1987; Clarke & Eagling 1994). The alkaloid pro-

duction of EC perennial ryegrass was not affected by

BYDV infection and there were no differences in

herbage yield between BYDV-infected EC and EK
plants, although there were genotype-related

differences (Hesse & Latch 1999). However, even if

the BYDV may infect (EC and EK) grasses without

causing any direct loss for their fitness, its presence in

the grass may serve as a reservoir for subsequent

infection of other agricultural crops. Thus, low infec-

tion rate of BYDV in EC meadow ryegrass may

protect the adjacent plants from BYDV infections.

This phenomenon may be used in agricultural prac-

tises by sowing EC meadow ryegrass next to cereals

that may suffer heavily for BYDV infection, and

thereby trying to reduce yield losses caused by the

virus.
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